On the higher-order derivatives of spectral functions
نویسنده
چکیده
In this paper we are interested in the higher-order derivatives of functions of the eigenvalues of symmetric matrices with respect to the matrix argument. We describe the formula for the k-th derivative of such functions in two general cases. The first case concerns the derivatives of the composition of an arbitrary (not necessarily symmetric) k-times differentiable function with the eigenvalues of symmetric matrices at a symmetric matrix with distinct eigenvalues. The second case describes the derivatives of the composition of a k-times differentiable separable symmetric function with the eigenvalues of symmetric matrices at an arbitrary symmetric matrix. We show that the formula significantly simplifies when the separable symmetric function is k-times continuously differentiable. As an application of the developed techniques, we re-derive the formula for the Hessian of a general spectral function at an arbitrary symmetric matrix. The new tools lead to a shorter, cleaner derivation than the original one in [16]. To make the exposition as self contained as possible, we have included the necessary background results and definitions. The proofs of the intermediate technical results are collected in the appendices.
منابع مشابه
Extension of Higher Order Derivatives of Lyapunov Functions in Stability Analysis of Nonlinear Systems
The Lyapunov stability method is the most popular and applicable stability analysis tool of nonlinear dynamic systems. However, there are some bottlenecks in the Lyapunov method, such as need for negative definiteness of the Lyapunov function derivative in the direction of the system’s solutions. In this paper, we develop a new theorem to dispense the need for negative definite-ness of Lyapunov...
متن کاملThe norm of pre-Schwarzian derivatives on bi-univalent functions of order $alpha$
In the present investigation, we give the best estimates for the norm of the pre-Schwarzian derivative $ T_{f}(z)=dfrac{f^{''}(z)}{f^{'}(z)} $ for bi-starlike functions and a new subclass of bi-univalent functions of order $ alpha $, where $Vert T_{f} Vert= sup_{|z|
متن کاملNumerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method
In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...
متن کامل. SP ] 1 6 Ja n 20 09 HIGHER ORDER SPECTRAL SHIFT , II . UNBOUNDED CASE
Abstract. We construct higher order spectral shift functions, which represent the remainders of Taylor-type approximations for the value of a function at a perturbed self-adjoint operator by derivatives of the function at an initial unbounded operator. In the particular cases of the zero and the first order approximations, the corresponding spectral shift functions have been constructed by M. G...
متن کاملAn efficient extension of the Chebyshev cardinal functions for differential equations with coordinate derivatives of non-integer order
In this study, an effective numerical method for solving fractional differential equations using Chebyshev cardinal functions is presented. The fractional derivative is described in the Caputo sense. An operational matrix of fractional order integration is derived and is utilized to reduce the fractional differential equations to system of algebraic equations. In addition, illustrative examples...
متن کامل